Category Archives: Mantenimiento y gestión EDAR

Problemas de depuración en el sector conservas

Cómo solucionar los problemas de depuración en el sector de conservas

En este post trataremos los principales problemas de depuración en el sector conservas. Este sector se caracteriza por tener un vertido con un alto contenido en almidón (patata, guisante, maíz, legumbre,…) La mayor parte del agua que se utiliza en el sector acaba finalmente como corriente de agua residual. Toda el agua captada, será vertida, excepto la que sea necesaria en algún caso como agua de condimento.

Cómo solucionar los problemas de depuración surgidos en el sector conservas con alto contenido en almidón

Cómo solucionar los problemas de depuración surgidos en el sector conservas con alto contenido en almidón

Incluimos en este sector a las fábricas de procesado de patatas, guisantes, maíz, legumbres, etc., tanto para congelado, como para envasado, incluso precocinados, como pueden ser la fabricación de tortillas de patatas y cocción de legumbres.

Se ha distinguido este tipo de industria basada en la elaboración de los productos anteriores, por el alto contenido en almidones, cuya degradación es muy rápida e influye en el diseño de los tratamientos de sus vertidos, así como en las operaciones de mantenimiento.

 

 

Aguas Residuales, problemas de depuración en el sector conservas

La generación de aguas residuales es el aspecto ambiental más significativo de la actividad de las empresas del sector conservero, tanto por los elevados volúmenes generados como por la carga contaminante asociada a las mismas.

Las principales corrientes parciales que más contribuyen en volumen y/o carga contaminante al efluente final proceden de:

  • Limpieza de equipos, instalaciones, CIP de limpieza de líneas, escaldado de producto, limpieza del propio producto. Aporta una parte importante del volumen del efluente final.

En cuanto a la carga contaminante proviene de restos de conserva de los procesos de limpieza o cocción del producto, materia prima.

  • Limpieza de camiones de transporte de materia prima.

Las cargas contaminantes pueden variar de una instalación a otra y en ciertos casos presentar valores bastante diferentes a los anteriores. Las causas de la variabilidad en las características de estos efluentes son múltiples, destacando:

  • El grado de optimización del consumo de agua.
  • Los procedimientos de limpieza y productos químicos utilizados, CIP de limpieza.
  • La tecnología utilizada en las operaciones consumidoras de agua, básicamente.
  • Limpieza de la materia prima y cocción.

El elevado consumo de agua se debe principalmente a la necesidad de mantener unos exigentes estándares higiénicos y sanitarios, además de la cocción del producto. Esta agua suelen tener la particularidad de presentar un alto contenido de carga contaminante en forma de DQO y DBO5, como consecuencia de la presencia almidones disueltos con una biodegradabilidad muy alta. La instalación típica de tratamiento de estos efluentes, suele estar compuesta por los siguientes puntos:

  • Desbaste
  • Homogeneizador
  • Tratamiento Biológico
  • Decantadores o membranas (MBR)
  • Secado de fangos

Posibles problemas de depuración en el sector conservas y sus causas

Vista general depuradora sector conservas

1. Problema de olores y de pH en los homogeneizadores, debido a la presencia de almidones, cuya degradación es muy rápida.

Causas

  • Falta o insuficiencia de aireación.
  • Excesivo tiempo de permanencia del agua en estos depósitos, produciendo olores y descensos de pH.
  • Excesivo consumo de sosa, porque el pH desciende muy rápidamente, produciendo olores picantes.

Objetivo

Reducir los olores y el consumo de sosa, minimizando los procesos de fermentación.

2. Incumplimiento en los parámetros de vertido, causados por problemas de decantación o rendimiento del sistema, provocados por una deficiente compensación de nutrientes o materia orgánica en el biológico, lo que además ocasiona un excesivo consumo de energía.

Causas

  • Exceso de carga de entrada según diseño, que provocan una demanda de oxígeno muy elevada.
  • Control de dosificación de nutrientes incorrecto, provocando mala estructura flocular o no alcanzar los parámetros de vertido deseados.
  • Tiempos de retención hidráulica inadecuados o recirculaciones de fango no controladas.
  • Falta de aporte de oxígeno en unos momentos puntuales. Muy crítico en este tipo de vertidos, pero eso es fundamental diseñar con coeficientes de seguridad.
  • Gestión del fango inadecuada: edad del fango, carga másica, concentraciones de fango, % de volátiles, etc.

Objetivo

Estabilización de las condiciones de trabajo del reactor biológico, de tal manera que nos permitan, maximizar la capacidad de tratamiento, y minimizar los costes energéticos.

3. Exceso de consumo de agua en el propio proceso de producción, por una aplicación de buenas prácticas no adecuada. (MTDs). Es sencillo comprobar el grado de implicación en este sentido, dado que tenemos un número importante de referencias las cuales nos permiten establecer caudales y cargas en función de la elaboración que se produce en los procesos de fabricación.

Causas

  • Mala gestión del agua por cultura y comodidad.
  • No contar con los elementos adecuados de inyección y recogida.
  • Inadecuados dispositivos de limpieza o bajo índice de recirculaciones. Implicación directa sobre el coste de consumo y vertido del agua.
  • No utilización de recuperaciones de agua e incluso reutilizaciones.

4. Bajo rendimiento en la deshidratación de los lodos, por una incorrecta gestión de los fangos, deficiencias en las cantidades y calidades del polielectrolito y, por inestabilidad del fango en el biológico.

Causas

  • Edad del fango muy baja ocasionada por excesiva purga de fango, lo que puede estar provocando inestabilidad en el fango, provocando reducción de rendimientos o mala decantación en el tratamiento, y en el secado, mala deshidratación.
  • Composición volátil del fango.
  • En el mercado existen un número elevado de clases de polielectrolíto, aniónicos, catiónicos, reticulados, de mayor o menor capacidad iónica, etc. Es cuestión de encontrar el más apropiado para la aplicación.
  • Falta de homogeneización en los lodos a tratar, fangos digeridos, etc. Todos ellos tienen una capacidad diferente para ser deshidratados distinta y no tienen por qué coincidir con instalaciones similares.
  • En el caso de centrífugas, posibles desajustes en los parámetros electromecánicos de la instalación.

Objetivo

Reducir la producción de fangos a gestionar y en consecuencia los costes asociados a la instalación de secado, tanto de energía, como de personal, productos, etc. Buscar alternativas de valorización de estos subproductos que nos permitan reducir los costes de gestión.

5.Consumo de energía elevado, incrementando considerablemente los costes como consecuencia de no realizar una buena gestión de la planta incluso de la propia energía. una incorrecta gestión de los fangos, deficiencias en las cantidades y calidades del polielectrolito y, por inestabilidad del fango en el biológico.

Causas

  • Biológico no equilibrado, con alteraciones, como son el bulking filamentoso o viscoso. Este último afecta de manera considerable a la trasferencia de oxígeno.
  • Concentraciones de fango o edad del fango, hay que verificar el diseño de la instalación e identificar las posibilidades de trabajo que nos da.
  • Aporte de nutrientes no eficiente. Falta de tiempos de retención, agitación, recirculaciones, carga de entrada, etc.
  • No tener programas de gestión de energía que hagan que la planta trabaje en función de las tarifas eléctricas aplicadas. Este punto puede suponer ahorros hasta del 40 % en la factura de la luz.
  • Línea de aire con deficiencias por diseño o por el mantenimiento de la misma.

¿Qué podemos hacer?

Implantar un modelo de diagnóstico técnico- económico de la instalación qué permita conocer los puntos críticos de esta, los cuellos de botella que tenemos y si la planta está trabajando de manera óptima para lo que fue diseñada.

A partir de este modelo se ofrece un plan de evaluación qué explica las acciones necesarias para conseguir qué la planta llegue a los niveles operativos qué ofrezcan beneficios como:

  • Auditar el proyecto y el funcionamiento de la instalación con el fin de verificar rendimientos y posibles puntos a mejorar.
  • Estabilidad de procesos. Procesos más fiables y seguros. Mejorar rendimientos.
  • Reducción de los consumos de reactivos o conseguir mejores rendimientos de la instalación.
  • Reducción en el coste de la energía por €/m3.
  • Optimización de los procesos de tratamientos de fangos y en consecuencia, reducción de costes asociados.
  • Establecer controles coherentes a la instalación existente. Muchas veces se hacen controles que no aportan nada y otros que se requieren no se hacen. En consecuencia reducción de gasto innecesario y mejor control.
  • Evitar usos de agua irracionales y establecer un catecismo de buenas prácticas.

¿Por qué?

En el Grupo AEMA tenemos amplia experiencia avalada por nuestros clientes en el sector, que nos permite obtener información muy valiosa y que ponemos a su servicio con el fin de mejorar sus procesos y costes ligados al tratamiento de aguas, contribuyendo así, a que sus productos se saquen al mercado a un coste menor de producción y sean más competitivos. No debemos olvidar que el coste de tratamiento de aguas es un coste directo de los procesos de producción y por tanto del precio del producto que saldrá al mercado. El departamento de IDi del Grupo AEMA trabaja paralelamente, con el departamento de explotación y mantenimiento, desarrollando e innovando, técnicas de control que nos ayudan a definir los puntos de trabajo de las instalaciones, consiguiendo resultados excelentes e impensables en un primer inicio. Este último punto supone un feedback de información para nuestro departamento de ingeniería, que hace que cada día los diseños sean una evolución del anterior, permitiendo reducir costes de implantación, y lo que es más importante, ganar en seguridad y reducir los costes de operación.

 

¿Quiere resolver alguno de estos problemas con su EDAR? Puede contactar con nuestros asesores técnicos para que le ayuden a solucionarlo: comercial@aemaservicios.com

 

Mantenimiento de las depuradoras de aguas industriales

Mantenimiento depuradora

En este post trataremos la importancia del correcto mantenimiento de las depuradoras de aguas industriales.

El adecuado mantenimiento de las depuradoras de aguas industriales, comporta la previa y correcta implementación de las acciones necesarias para garantizar la máxima disponibilidad de los equipos, el mínimo consumo energético y la mayor vida útil de estos. Es importante conocer las condiciones necesarias que deben cumplirse para el adecuado funcionamiento de los equipos, así como las diferentes técnicas de mantenimiento de las depuradoras asociadas a cada uno de ellos.

El técnico de mantenimiento de depuradoras de aguas industriales, debe tener un conocimiento global sobre las instalaciones y disponer de las técnicas para la prevención y la resolución rápida y eficaz de las averías.

No realizar las adecuadas labores de mantenimiento en una depuradora, se traduce en averías imprevistas en momentos inoportunos y que, con frecuencia, llevan asociados otros tipos de costes de personal, consumo de productos químicos, medioambientales, etc.

Recomendamos, a la hora de contabilizar cuáles han sido los costes cuando se produce una avería en la EDAR, se incluyan, además de los relacionados directamente con la reparación, los costes incurridos por pérdidas por falta de disponibilidad del equipo y los daños medioambientales incurridos.

En el caso de las depuradoras de aguas residuales industriales, empresas como AEMA, especialistas en mantenimiento de depuradoras de aguas industriales, saben cuál es el promedio en el que se mueven esos costes, para asegurar que la vida útil de los equipos de la EDAR trabajen con la máxima eficacia y mantenibilidad posible.

Es común ver que las presiones en los presupuestos hacen que, en numerosas ocasiones, las partidas de dinero que se dedican al mantenimiento no cubran los mínimos deseados. Al final de todo, la percepción es que la depuradora no aporta valor al producto final, ni ayudará a crear más ingresos para la empresa. Se tiende a pensar que representa un coste, pero éste es necesario ya que sin depuradora muchas fábricas no tendrían permiso para continuar con su actividad.

Qué sucede con las empresas que no cuentan con el adecuado mantenimiento de las estaciones depuradoras de aguas industriales:

  • Instalaciones deterioradas.
  • Acortamiento de la vida útil de los equipos.
  • Incremento en los consumos energéticos por ineficiencias.
  • Daños al medio ambiente por vertidos de aguas depuradas deficientemente.
  • Incremento en los riesgos de multas por no cumplir con los parámetros de vertido.

El coste de explotación y mantenimiento de las depuradoras de aguas industriales suelen variar en función del tamaño de la instalación y de la tecnología utilizada.

Operaciones de mantenimiento en una depuradora

Operaciones de mantenimiento en una depuradora

Las empresas que apuestan por la explotación y mantenimiento de sus depuradoras de aguas industriales lo ven como una inversión y evidencian una dedicación de recursos económicos que se traducen en ventajas como: Reducción de costes, aumento de la vida útil de los equipos, incremento de la disponibilidad y la reducción de riesgos de verter fuera de los parámetros establecidos.

La gestión de la explotación y mantenimiento de las depuradoras de aguas industriales, debe disponer de herramientas de control adecuadas para poder realizar una evaluación periódica, deseable cada año, sobre la sostenibilidad económica de la misma. Se recomienda que esta evaluación sea realizada por empresas con experiencia en el servicio integral (explotación y mantenimiento) de las instalaciones de potabilización (ETAP), depuración (EDAR) y reutilización de aguas (ERAR), tanto industriales como urbanas.

AEMA se encarga de controlar y asesorar en la gestión adecuada de las plantas, con un servicio altamente cualificado y especializado. El objetivo es garantizar una mayor vida útil de las instalaciones, evitando paradas innecesarias, posibles averías en los sistemas,…

Una correcta operación implica:

  • Conocer la instalación y el proceso.
  • Conocer las características del agua en cada etapa del proceso.
  • Conocer los parámetros que definen dichas etapas.
  • Modificar los parámetros para obtener  mejor calidad del agua tratada.
  • Realización de diferentes funciones: mantenimiento hidráulico, mecánico, eléctrico,…
  • Realizar determinación analítica de parámetros indicativos del funcionamiento de la planta.
  • Puesta en marcha y operaciones previas a la puesta en marcha.

Si necesita asesoramiento sobre cómo gestionar su depuradora, contacte con nuestros técnicos comercial@aemaservicios.com

35 acciones para minimizar el canon a pagar de tu depuradora de aguas residuales industriales

Depuradora de aguas residuales industriales

Los vertidos al dominio público hidráulico estarán gravados con una tasa destinada al estudio, control, protección y mejora del medio receptor de cada cuenca hidrográfica, que se denomina en general como canon de control de vertidos.

Depuradora de aguas residuales industriales

Depuradora de aguas residuales industriales

El vertido de aguas y productos residuales susceptibles de contaminar las aguas, requiere en España de una autorización administrativa. Por tanto, toda actividad susceptible de provocar la contaminación o degradación del dominio público hidráulico y, en particular, el vertido de aguas y de productos residuales susceptibles de contaminar las aguas continentales, requiere autorización administrativa.

El vertido de aguas residuales al dominio público hidráulico exige el cumplimiento de los límites cuantitativos y cualitativos concretados, para cada caso, en la autorización de vertido otorgada por la Confederación Hidrográfica correspondiente. De esta forma, solo los vertidos que respeten los límites de autorización tendrán la consideración de legales.

La realización de vertidos al dominio público hidráulico va unida al pago de un canon de control de vertido destinado a la protección y mejora del medio receptor de las cuencas hidrográficas. Su cuantía se determinará en función de:

  • El volumen vertido.
  • La carga o fuerza contaminante que tengan las aguas residuales.
  • La idoneidad de las instalaciones de tratamiento y la sensibilidad del medio receptor.

Para disminuir el canon de vertido debemos trabajar en dos vías:

1)  Disminuir los volúmenes de aguas residuales que estamos vertiendo. Tengamos presente la idea que a menor cantidad de agua usada menor es la generación de aguas residuales.

2)  Disminuir la carga contaminante de las aguas residuales.

Aquí tienes 35 acciones que puedes realizar para trabajar en estos dos puntos:

  1. Diseñar campañas de información y formación entre los empleados para el ahorro de agua durante el proceso productivo.
  2. Inspeccionar los sistemas de fontanería para detectar posibles fugas.
  3. Instalar sistemas que permitan el ahorro de agua en las diversas instalaciones de la empresa (planta de producción, zonas de aseo de trabajadores, zonas de uso público). Algunos ejemplos de estos sistemas de ahorro son: reguladores de presión, mecanismos para grifería, grifería monomando, grifería temporizada o de cierre automático, grifería electrónica, limitadores de caudal, etc.
  4. Cisternas de los inodoros y urinarios: Descarga por gravedad (Interrupción de descarga, doble pulsador,…), descarga presurizada, etc.
  5. Instalar equipos de lavado de envases, pieza, etc. en contracorriente, esto permitirá el ahorra de agua en este proceso.
  6. Realizar el tratamiento de las aguas en función de su utilización en el proceso de producción.
  7. Analizar con regularidad las aguas para conocer en todo momento el pH y su composición.
  8. Crear diferentes redes de agua: una red de agua industrial o de servicios, otra de refrigeración, otra de agua tratada, agua de calderas, etc. Para cada una de estas aguas debe definirse su uso y formas de utilización.
  9. Reducir la cantidad de agua utilizada en el transporte de las materias primas o productos elaborados, sustituyéndola por medios mecánicos.
  10. Utilizar métodos de limpieza en seco para las materias primas, como la vibración o aire comprimido en el caso de las frutas y verduras (Ejemplo: emplear en el lavado de las aceitunas, vibradores que permitan eliminar las hojas, tierra, etc que lo acompañan).
  11. En la limpieza de almacenes utilizar barredoras mecánicas en vez de agua a presión.
  12. Depurar y filtrar las aguas utilizadas en el proceso productivo antes de verterlas.
  13. Mecanizar los sistemas de limpieza de frutas y verduras y, si es posible, recuperar el agua mediante circuito cerrados con depuración.
  14. Reutilizar el agua depurada, siempre que los protocolos de higiene lo permitan, en otros usos dentro de la empresa como limpieza de las instalaciones, instalando para ello circuitos cerrados de depuración.
  15. Reutilizar el agua para el enfriamiento de de los envases, con posterioridad a la esterilización, en las torres de refrigeración.
  16. Revisar las instalaciones de forma periódica con el objeto de evitar las fugas de agua.
  17. Realizar el análisis de los procedimientos operacionales y de mantenimiento para poder detectar los puntos críticos, realizando cambios en los procesos productivos y en las materias primas utilizada si ello fuera necesario.
  18. Programar adecuadamente la producción para reducir la limpieza de los equipos empleados.
  19. Analizar los riesgos medioambientales del proceso productivo. Se trata de una buena forma de evitar posibles daños producidos por accidentes como  los derrames.
  20. Situar de forma visible en las instalaciones o tener a disposición de los trabajadores información actualizada sobre los métodos y sustancias que sean respetuosas con el medio ambiente y minimicen la generación de residuos.
  21. Posibilitar la puesta en práctica de mecanismos que aseguren una correcta limpieza de las instalaciones y una menor agresión sobre el medio ambiente.
  22. Mejorar los procedimientos y mecanismos de limpieza para minimizar los residuos.
  23. Los productos de limpieza a utilizar deben ser poco contaminantes y respetuosos con el medio ambiente, debiendo estar de acuerdo con las disposiciones normativas vigentes.
  24. Leer las etiquetas de los productos de limpieza para realizar correctamente su manipulación y conocer su contenido, así como los riesgos tóxicos que se deriven de los mismos.
  25. Tener siempre a la disposición del responsable medioambiental las fichas técnicas de los productos de limpieza empleados.
  26. Adquirir los productos con bajos riesgos para la salud, en los que el coste o tratamiento de los residuos sea bajo o nulo.
  27. Utilizar para las labores de limpieza aguas blandas o tratadas para ablandarlas.
  28. Elegir siempre que se pueda productos con etiquetas ecológicas.
  29. Introducir variaciones en las materias primas utilizadas y en las diversas fases del proceso de manera que se reduzcan los vertidos.
  30. Emplear equipos eficientes en la producción de vertidos.
  31. Utilizar balsas de evaporación natural cuando los costes lo justifiquen.
  32. Utilizar plantas de tratamiento de vertido cero. Éstas tienen como objetivo principal la recirculación del agua depurada en los procesos productivos con el fin de no verter y no consumir.
  33. Utilizar equipos de cristalización y evaporación al vacío para vertido cero en los casos que sean necesario.
  34. Depurar las aguas residuales antes de verterlas mediante alguna de las técnicas de depuración tanto convencionales como con sistemas avanzados.
  35. Utilizar células fotoeléctricas para el lavado de productos en continuo.

cta-800px

Depuradora de aguas residuales industriales

Cómo seleccionar la mejor centrifuga para tratar fangos de aguas residuales

Centrifuga para tratar fangos de aguas residuales industriales

Los costes de transporte y eliminación constituyen el coste más importante con diferencia en la deshidratación de lodos. pudiendo llegar a representar más del 70 por ciento del total. Por tanto, contar con un grupo de deshidratación potente se convierte en un criterio decisivo en la gestión eficiente de una EDAR. Con una centrífuga, puedes conseguir la máxima materia seca del lodo deshidratado y ahorrar en todo momento en los costes de transporte y eliminación.

Existen dos tipos de deshidratación: Natural y la mecánica. El primer tipo lo forman las eras de secado, y el segundo está constituido, fundamentalmente por: Filtros banda, filtros prensa, filtros de vacío y centrifugas. La clave en el éxito de una deshidratación mecánica esta´en el tipo de acondicionamiento previo.

El acondicionamiento del fango se emplea para mejorar el rendimiento de la deshidratación mecánica. Fundamentalmente existen dos métodos:

1)     Acondicionamiento químico: Consiste en la adición de reactivas de tal forma que s consiga la floculación de los sólidos y la expulsión de parte del agua retenida. Los reactivos pueden ser de origen mineral como el cloruro férrico y la cal o de origen orgánico entre los que se encuentran los polielectrolitos aniónicos o catódicos. Los reactivas químicos son mejores para filtros prensa o de vacío; por su parte los reactivas orgánicos funcionan mejor en centrífugas y filtros banda. En general, e tiempo de floculación debe ser superior a 20 minutos.

Proceso

Sequedad %

Consumo de Energía KW/t xSS

Rendimiento

Coste de Inversión

Filtro vacío 20-25 60-150 18-22 Kg SS /m2 x h Medio
Centrífuga 20-25 40-60 Medio
Filtro Banda 20-25 5-20 Variable Bajo
F. Banda – Prensa 27-33 10-30 Variable Alto
Filtro Prensa 40-45 20-40 3-4 Kg SS/m2 x h Muy Alto

2)     Acondicionamiento térmico: Consiste en calentar el fango durante un tiempo breve bajo presión. este método tiene mayor aplicación en el caso de fangos provenientes de un tratamiento biológico. Si no se tiene espacio, si se busca que el fango esté higienizado, si se está dispuesto a consumir unos 1000kW.h /Tn agua a evaporar, y si se acepta el hacerse cargo de instalaciones complejas, la elección debe recaer sobre el secado térmico.

El la tabla puede observarse un resumen de las características de los sistemas de filtración mecánica. Se puede apreciar que el uso de filtros prensa proporciona la mayor sequedad pero a costa de un coste de inversión muy alto, si bien el consumo de energía se sitúa comparativamente en la zona media.

Veamos que factores deben tenerse en cuenta al momento de seleccionar una Centrifuga:

•       Selecciona aquella que ofrezca el mayor volumen de sedimentación y te proporcione la máxima densidad de salida (10 – 20 por ciento) con un mínimo espacio requerido.

•       Posibilidades de aplicación flexible, es decir, que sirva tanto para la deshidratación de lodos digeridos como para la deshidratación directa de exceso de lodo no digerido

•       Elige aquella que proporcione el mayor ahorro de energía.

•       Selecciona aquella con menores efectos sobre la salud del personal de la planta (sin carga de aerosoles ni escapes de suciedad ni olores) debe ser un sistema lo más cerrado posible.

•       Debe garantizar el máximo contenido de materia seca con la centrífuga.

•       Pregunta por referencias de éxito sobre los resultados de separación óptimos. Verifica que la velocidad del tambor y la velocidad diferencial se puedan regular de manera independiente.

•       La reducción de costes operativos gracias a la reducción del consumo de floculantes es un requerimiento que no puede faltar al momento de seleccionar la mejor solución para la deshidratación.

•       Debe ser de fácil manejo y con un sistema de control sencillo.

•       El ahorro en costes de personal son importantes, es decir, que debe ofrecer las mínimas necesidades de personal, incluso hasta el funcionamiento automático de 24 horas.

•       Máxima vida útil gracias al uso de acero inoxidable de alta calidad, pregunta por los materiales y las medidas optimizadas de protección contra el desgaste que te ofrezcan los fabricantes.

•       Debe disponer de un servicio técnico con especialistas y técnicos cualificados

•       ¿Qué sistemas de reducción del riesgo de averías de la instalación/máquina te pueden ofrecer?

•       Pregunta por las mejoras de la eficiencia de tu proceso actual.

•       Debe contar con precios más económicos de las piezas de repuesto en comparación con la competencia. Además de la disponibilidad de los mismos ¿Te pueden dar garantía de repuestos para los próximos 10 o 20 años.

Aguas industriales EDAR la Rioja

Aguas industriales EDAR la Rioja

Cómo seleccionar la mejor centrifuga para tratar fangos de aguas residuales

Centrifuga para tratar fangos de aguas residuales industriales

Los costes de transporte y eliminación constituyen el coste más importante con diferencia en la deshidratación de lodos. pudiendo llegar a representar más del 70 por ciento del total. Por tanto, contar con un grupo de deshidratación potente se convierte en un criterio decisivo en la gestión eficiente de una EDAR. Con una centrífuga, puedes conseguir la máxima materia seca del lodo deshidratado y ahorrar en todo momento en los costes de transporte y eliminación.

Existen dos tipos de deshidratación: Natural y la mecánica. El primer tipo lo forman las eras de secado, y el segundo está constituido, fundamentalmente por: Filtros banda, filtros prensa, filtros de vacío y centrifugas. La clave en el éxito de una deshidratación mecánica esta´en el tipo de acondicionamiento previo.

El acondicionamiento del fango se emplea para mejorar el rendimiento de la deshidratación mecánica. Fundamentalmente existen dos métodos:

1)     Acondicionamiento químico: Consiste en la adición de reactivas de tal forma que s consiga la floculación de los sólidos y la expulsión de parte del agua retenida. Los reactivos pueden ser de origen mineral como el cloruro férrico y la cal o de origen orgánico entre los que se encuentran los polielectrolitos aniónicos o catódicos. Los reactivas químicos son mejores para filtros prensa o de vacío; por su parte los reactivas orgánicos funcionan mejor en centrífugas y filtros banda. En general, e tiempo de floculación debe ser superior a 20 minutos.

Proceso

Sequedad %

Consumo de Energía KW/t xSS

Rendimiento

Coste de Inversión

Filtro vacío

20-25

60-150

18-22 Kg SS /m2 x h

Medio

Centrífuga

20-25

40-60

Medio

Filtro Banda

20-25

5-20

Variable

Bajo

F. Banda – Prensa

27-33

10-30

Variable

Alto

Filtro Prensa

40-45

20-40

3-4 Kg SS/m2 x h

Muy Alto

 2)     Acondicionamiento térmico: Consiste en calentar el fango durante un tiempo breve bajo presión. este método tiene mayor aplicación en el caso de fangos provenientes de un tratamiento biológico. Si no se tiene espacio, si se busca que el fango esté higienizado, si se está dispuesto a consumir unos 1000kW.h /Tn agua a evaporar, y si se acepta el hacerse cargo de instalaciones complejas, la elección debe recaer sobre el secado térmico. 

El la tabla puede observarse un resumen de las características de los sistemas de filtración mecánica. Se puede apreciar que el uso de filtros prensa proporciona la mayor sequedad pero a costa de un coste de inversión muy alto, si bien el consumo de energía se sitúa comparativamente en la zona media.

Veamos que factores deben tenerse en cuenta al momento de seleccionar una Centrifuga:

•       Selecciona aquella que ofrezca el mayor volumen de sedimentación y te proporcione la máxima densidad de salida (10 – 20 por ciento) con un mínimo espacio requerido.

•       Posibilidades de aplicación flexible, es decir, que sirva tanto para la deshidratación de lodos digeridos como para la deshidratación directa de exceso de lodo no digerido

•       Elige aquella que proporcione el mayor ahorro de energía.

•       Selecciona aquella con menores efectos sobre la salud del personal de la planta (sin carga de aerosoles ni escapes de suciedad ni olores) debe ser un sistema lo más cerrado posible.

•       Debe garantizar el máximo contenido de materia seca con la centrífuga.

•       Pregunta por referencias de éxito sobre los resultados de separación óptimos. Verifica que la velocidad del tambor y la velocidad diferencial se puedan regular de manera independiente.

•       La reducción de costes operativos gracias a la reducción del consumo de floculantes es un requerimiento que no puede faltar al momento de seleccionar la mejor solución para la deshidratación.

•       Debe ser de fácil manejo y con un sistema de control sencillo.

•       El ahorro en costes de personal son importantes, es decir, que debe ofrecer las mínimas necesidades de personal, incluso hasta el funcionamiento automático de 24 horas.

•       Máxima vida útil gracias al uso de acero inoxidable de alta calidad, pregunta por los materiales y las medidas optimizadas de protección contra el desgaste que te ofrezcan los fabricantes.

•       Debe disponer de un servicio técnico con especialistas y técnicos cualificados

•       ¿Qué sistemas de reducción del riesgo de averías de la instalación/máquina te pueden ofrecer?

•       Pregunta por las mejoras de la eficiencia de tu proceso actual.

•       Debe contar con precios más económicos de las piezas de repuesto en comparación con la competencia. Además de la disponibilidad de los mismos ¿Te pueden dar garantía de repuestos para los próximos 10 o 20 años.

Centrifuga para tratar fangos de aguas residuales industriales

Centrifuga para tratar fangos de aguas residuales industriales

Centrifuga para tratar fangos de aguas residuales industriales

Ensuciamiento de membranas en un MBR ¿Sabes cómo resolverlo?

El ensuciamiento de las membranas en un MBR condicionan la operación y el mantenimiento de estos sistemas y limitan su vida útil. Para optimizar esto, es importante un buen diseño que considere las características del agua a tratar y las de la membranas a utilizar, además de propiciar unas condiciones de operación adecuadas. En el mundo de los tratamientos de aguas residuales industriales, cada vez tienen más importancia los protocolos de limpieza de las membranas y su adaptación en el tiempo, con la utilización de productos y reactivos adecuados. Es recomendable que estos protocolos deben ir acompañados cuando sea necesario, del análisis y estudio de la membrana a nivel de laboratorio.

Ensuciamiento de membranas en un MBR

Ensuciamiento de membranas en un MBR

Para poder optimizar tanto las condiciones de operación como los protocolos de limpieza, cada vez son más necesarios estudios de laboratorio, así como ensayos destructivos de Autopsias de Membrana, que permitan localizar, evaluar y corregir ensuciamientos, roturas y disfunciones de los sistemas de membrana.

La continua acumulación de materia, tanto orgánica como inorgánica, sobre la superficie de la membrana forma una capa de sólidos, que si bien es beneficiosa para la eliminación de patógenos, se convierte en un gran inconveniente cuando crece demasiado. Todos los trabajos revisados consideran el ensuciamiento como uno de los mayores problemas que impiden el correcto funcionamiento de la membrana.

Entre los factores que influyen en el ensuciamiento destacan el material de la membrana, las características del lodo, las características del agua alimentada y condiciones de operación. Los principales efectos del ensuciamiento son:

– El taponamiento de los poros.

–      La reducción del flujo de agua a través de la membrana.

–      El aumento de la diferencia de presión entre ambos lados de la superficie de la membrana.

La limpieza se realiza inicialmente mediante tratamientos físicos, pasando agua del permeado a contracorriente o parando el proceso de filtración consiguiendo que la capa se caiga por gravedad. Se considera necesaria esta limpieza cuando la acumulación de sólidos, en membranas que trabajan con microfiltración, se encuentra por encima de 3 gramos por metro cuadrado de superficie. En caso de que este tratamiento sea insuficiente, la limpieza se realiza con productos químicos.

Actualmente, las investigaciones se centran en el desarrollo de nuevos materiales, ya sea mediante la modificación física de membranas o la incorporación de nuevos materiales a las membranas comerciales  y en el uso de membranas dinámicas, mediante la formación de capas protectoras con el objetivo de reducir el problema del ensuciamiento.

Aguas industriales EDAR la Rioja

Aguas industriales EDAR la Rioja

Ensuciamiento de membranas en un MBR

 

Fangos Activos: Bulking Principal Problema de explotación

Principales problemas de explotación en Fangos activos y aguas residuales industriales

La explotación de una instalación de depuración de aguas industriales que utiliza fangos activos suele presentar algunos problemas de explotación inherentes al propio sistema de depuración. En este post nos centraremos en el más importante de todos, aquel relacionado con las modificaciones de la sedimentabilidad de los fangos (Bulking)

El bulking es actualmente un fenómeno suficientemente conocido a causa de los problemas que causa en el tratamiento de las aguas industriales, y su nombre puede considerarse internacional, sin necesidad de traducirse a otros idiomas.

Fangos Activos

Fangos Activos

Estudios estadísticos demuestran que el 40% de las plantas de depuración padecen bulking durante períodos de tiempo muy variables, y a veces en continuo. En la industria agroalimentaria la situación es peor, y casi todas las plantas han sufrido el bulking, en alguna ocasión.

La fuga de materias en suspensión es la responsable del 90% de los casos de degradación de la calidad del agua, y casi siempre estas fugas son la causa de la elevación del índice de fangos.

Puede considerarse que el bulking empieza cuando comienzan los problemas de decantación, debido a una insuficiente velocidad de sedimentación de los flóculos. Generalmente, los fangos activados se suponen en bulking cuando el índice de fangos supera los 200 cm3/g.

Factores que afectan al crecimiento relativo de los microorganismos filamentosos y floculantes 

  1. Carga másica o edad del Fango
  2. Concentración de sustrato:La concentración de sustrato influye considerablemente en el crecimiento relativo de los dos tipos de microorganismos: filamentosos y floculantes.
  3. Concentración de Oxígeno: Debido a que su superficie es relativamente mayor, los organismos filamentosos aprovechan mejor el oxígeno que los floculantes cuando su concentración es baja.
  4. Equilibrio Nutricional: Dependiendo de la edad del fango, se considera un agua desequilibrada cuando: N/DBO es inferior a: 0,035 a 0,050. – P/DBO es inferior a: 0,007 a 0,010.
  5. Oxidantes: Debido a su gran superficie específica, los microorganismos filamentosos tienen una sensibilidad a los oxidantes mayor que los floculantes.

 

 

Aguas industriales EDAR la Rioja

Aguas industriales EDAR la Rioja

Bioreactor de Membranas para aguas industriales: Cómo reducir los costes energéticos de las EDARs mediante sistemas preventivos en las líneas de aireación

Bioreactor de Membranas para aguas industriales

La optimización de los costes de explotación y mantenimiento de las EDAR es de vital importancia y, constituye una de las preocupaciones principales de los responsables de Calidad y Medioambiente. Dentro de los costes de explotación, el consumo energético es uno de los principales, y dada la política de subida de precios que estamos experimentando, la tendencia esperada es que sigan incrementándose. Por este motivo, las empresas tienen que poner en marcha   proyectos dirigidos a optimizar los consumos energéticos de su EDAR.

Bioreactor de Membranas para aguas industriales

Bioreactor de Membranas para aguas industriales

El principal y mayor coste de operación de los sistemas de depuración, se produce en el consumo energético de sus reactores biológicos, por este motivo, la mayoría de los avances tecnológicos que se estudian, desarrollan y llevan a cabo su implantación, están ligados con los sistemas de aireación de los reactores. En un consumo que representa el 80 % del total de consumo de energía de toda la instalación, cualquier pequeña mejora o modificación del sistema de aireación representa un volumen importante de reducción de costes asociados a la reducción de energía. Muchas empresas están en constante estudio y desarrollo de tecnología que permita reducir los costes de operación de las instalaciones en este sentido.

Los responsables de una EDAR deben contar con un sistema de mantenimiento preventivo de las líneas de aireación de los reactores biológicos, para permitir ahorros de hasta el 10 % en el consumo energético. Este descenso en los costes de operación, no se produce de forma directa en una instalación de reciente construcción, sino que permitirá que el aumento de consumo provocado por el envejecimiento de las instalaciones, como consecuencia de ensuciamientos inorgánicos y orgánicos, se produzca en menor medida. Estos ensuciamientos se producen en todos los sistemas. Se irán depositando sales, habitualmente carbonatos y biopelícula, que hace que en los sistemas de difusión se vayan obturando y en los sistemas jet o Körting que se reduzcan las secciones de paso de agua, desviando el sistema de la curva de trabajo.

Aguas industriales EDAR la Rioja

Aguas industriales EDAR la Rioja

Aguas residuales en mataderos de Aves: Cómo mejorar el consumo de agua y energía térmica durante el proceso de escaldado

Aguas Residuales en Mataderos de Aves

El escaldado se realiza para aflojar la inserción de las plumas en los folículos, ya que su eliminación no es posible realizarla en seco, y de esta manera facilitar la posterior operación de desplumado.

Normalmente el escaldado se realiza por inmersión en agua caliente, y se distinguen tres tipos: el escaldado alto, el escaldado medio y el escaldado bajo, dependiendo del binomio temperatura – tiempo utilizado. Los más utilizados en España son el escaldado alto y el bajo. El tiempo de escaldado suele ser entre 2,5-3,5 min.

Aguas residuales en mataderos de Aves

Aguas residuales en mataderos de Aves

Durante la permanencia de las canales en el escaldador, el agua debe agitarse para que penetre entre las plumas y llegue a la piel, cumpliendo su función de abrir los folículos. Los sistemas de agitación principales son el bombeo, las turbinas y la inyección de aire.

La temperatura se regula de forma automática, bien mediante reguladores que permiten la entrada de vapor o de agua caliente, o bien reguladores todo/nada.

Una solución de compromiso para reducir en lo posible la contaminación de las Aguas Residuales en Mataderos de Aves es utilizar el escaldado a contracorriente, en el que el agua limpia entra al baño por donde salen las aves y entre dos baños se instala una ducha de agua caliente para limpiar las aves, cayendo el agua al baño del que acaban de salir. De esta forma disminuye la contaminación que puedan traer las aves.

Normalmente, antes del escaldado, los pollos no pasan por ninguna etapa de lavado, por lo que toda la suciedad que arrastran desde el momento de la carga en la granja permanece aún sobre su superficie. Si pasan de esta forma a la etapa de escaldado, toda esta suciedad pasará al agua de escaldado, contaminándola rápidamente y provocando un aumento de la frecuencia de renovación; de lo contrario, la calidad higiénica de las canales podría verse perjudicada. Adicionalmente se consume mayor cantidad de energía térmica, puesto que hay que calentar mayor volumen de agua debido a la mayor renovación.

Para evitar la contaminación prematura del agua y al mismo tiempo ahorrar energía térmica, pueden someterse las aves a una limpieza previa al escaldado. Así, la transferencia de contaminación del ave al agua es menor, pudiendo reutilizarse más tiempo el agua, con los consiguientes ahorros de agua y energía.

Como ventaja adicional, se obtiene una reducción de la contaminación de los animales, puesto que se evita al menos parcialmente la transferencia de contaminación de unas aves a otras.

Para conseguir esta mejora con las Aguas residuales en mataderos de Aves  el único equipamiento necesario serían las duchas, a instalar entre las etapas de desangrado y escaldado.

Entre los beneficios que se pueden conseguir están:

1)  La reducción del consumo de agua y energía: al llegar las aves más limpias a la etapa de escaldado, las aguas de escaldado pueden recircularse más tiempo, ahorrando así agua y energía térmica.

2)  Minimización de residuos: adicionalmente, al reducirse la transferencia de contaminación entre unas aves y otras, se reducirá la cantidad de residuos al declararse no aptas menos canales durante la inspección veterinaria.

Tengamos en cuenta que una de las operaciones de mayor consumo de energía térmica en los mataderos de aves es el escaldado. En esta operación se invierte gran cantidad de energía térmica en mantener los tanques de escaldado por inmersión a una temperatura adecuada (superior a 60ºC) durante toda la jornada laboral, además de calentar el agua de aporte que se incorpora para compensar las pérdidas ocasionadas por el continuo paso de los pollos. Los escaldadores que no están adecuadamente aislados o los que están casi completamente abiertos no son energéticamente eficientes puesto que constantemente están perdiendo calor, lo que motiva un mayor consumo de energía térmica para compensar las pérdidas.

Además de la ausencia de aislamiento o cobertura del tanque de escaldado, pueden provocar pérdidas de energía determinadas actitudes como no tomar las medidas oportunas o no prestar la suficiente atención en el llenado manual de los escaldadores. Si esto ocurre pueden producirse pérdidas innecesarias de agua caliente en el momento de llenar los escaldadores y también a lo largo de la jornada con los sucesivos aportes de agua de reposición.

Para mejorar la eficiencia energética del escaldado puede instalarse otro sistema de escaldado diferente al de inmersión en aquellas instalaciones donde sea económicamente viable. Si no es viable, se pueden adoptar algunas de  las medidas siguientes:

1)  Para minimizar las pérdidas de calor por los laterales debe aislarse térmicamente el tanque de escaldado.

2)  Para minimizar las pérdidas de calor y la evaporación desde la superficie del agua debe cubrirse la parte superior. Para ello pueden emplearse bolas de plástico para cubrir la superficie.

3)  Para minimizar las pérdidas de calor por reboses de agua caliente cuando el tanque está lleno de animales debe controlarse el nivel de agua del tanque de escaldado. En el caso de los tanques provistos de sistemas de llenado automático se pueden instalar sondas de nivel. Las sondas de nivel de control automático de llenado, si funcionan correctamente y se realiza el mantenimiento adecuado, pueden liberar al operario de esta responsabilidad. Si el llenado es manual se deberá realizar una marca de nivel que indique el punto de llenado máximo para que no se produzcan pérdidas por rebose cuando el tanque esté lleno de aves.

Entre los beneficios que se pueden conseguir están:

1)Se reduce el riesgo de quemaduras de los operarios al disminuir la superficie caliente al descubierto.

2)  Reducción del consumo energético: el ahorro energético en esta operación está asociado a la prevención de pérdidas de calor por radiación (el aislamiento puede limitar la transmisión de calor a 0,5 kW/m2 superficie) y la pérdida de agua caliente. Además, puesto que en general se reducirán las necesidades de ventilación, se consumirá menos energía.

3)  Reducción de olores: una menor evaporación redundará en una emisión de olores menor.

4)  Reducción del consumo de agua, ya que se evita perder agua por llenado excesivo y por evaporación.

cta- sector-carnico800

17 prácticas para mejorar la gestión ambiental en un matadero de aves

Estación Depuradora de Agua Residual (EDAR) la Rioja

Estación Depuradora de Agua Residual (EDAR) la Rioja

Los mataderos, con sus procesos productivos y actividades consumen grandes cantidades de agua y generan muchos residuos. Muchos de ellos aun no disponen de los conocimientos y capacidades para aplicar mejoras continuas en sus sistemas productivos, reduciendo de esta manera el consumo de recursos y mejorando la gestión ambiental.

Las Buenas Prácticas que te presentamos en este artículo son medidas sencillas y útiles que puedes adoptar de cara a la gestión ambiental eficiente del un matadero de aves.

Son acciones que implican cambios y, en algunos casos, en el comportamiento y los hábitos de las personas involucradas en el proceso productivo, para disminuir los riesgos ambientales, promover el ahorro de recursos y conseguir una gestión sostenible de la actividad del matadero. En la mayoría de los casos son cambios simples, de aplicación relativamente sencilla y de gran aceptación dentro del matadero.

Entre las mejores prácticas para la gestión ambiental en mataderos de aves están:

  • Reducción del número de tomas de agua en la línea de sacrificio.
  • Optimización del consumo de agua.
  • Implantar dispositivos de corte automático del agua en los lavaderos de manos y delantales.
  • Sectorización y control centralizado del suministro de agua.
  • Optimización del consumo de energía.
  • Reducción de las pérdidas de energía desde las superficies frías y calientes.
  • Regular la temperatura adecuada según las necesidades de la aplicación.
  • Segregación de las aguas pluviales.
  • Tratamiento adecuado de las aguas residuales.
  • Aplicar pretratamientos de forma segregada a las aguas de limpieza de camiones y zona de recepción y espera
  • Dotar a los colectores de la pendiente adecuada para evitar el estancamiento del agua residual
  • Disponer de elementos para la recogida en seco y la segregación de los subproductos de forma continua
  • Almacenamiento adecuado de los subproductos
  • Disponer de un sistema adecuado para la gestión de residuos
  • Acondicionamiento de los tanques de almacenamiento de sangre para evitar vertidos accidentales
  • Habilitar un dispositivo que recoja los vertidos accidentales
  • Implantación de un sistema de gestión ambiental

cta- sector-carnico800